Regular simplex inscribed into a cube, half-circulant Hadamard matrices and Gaussian sums
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001) no. 1, pp. 58-81
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved with help of trigonometric sums method that if a number $2n-1$ is prime or equal to product of two prime twin numbers then a half-circulant Hadamard matrix of order $4n$ exists and into a $(4n-1)$-cube one can inscribe a regular simplex of the same dimensions. Group properties of polinomial pairs which give Hadamard matrices of half-circulant type is investigated as well, and it's installed effective necessary existence conditions for a given polinomial (from a group ring over whole numbers) another polinomial which forms with it such the pair what makes use for practical construction of Hadamard matrices of all orders $4n\leq 80$ with help of PC.
@article{JMAG_2001_8_1_a3,
author = {A. I. Medianik},
title = {Regular simplex inscribed into a cube, half-circulant {Hadamard} matrices and {Gaussian} sums},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {58--81},
year = {2001},
volume = {8},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2001_8_1_a3/}
}
TY - JOUR AU - A. I. Medianik TI - Regular simplex inscribed into a cube, half-circulant Hadamard matrices and Gaussian sums JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2001 SP - 58 EP - 81 VL - 8 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2001_8_1_a3/ LA - ru ID - JMAG_2001_8_1_a3 ER -
A. I. Medianik. Regular simplex inscribed into a cube, half-circulant Hadamard matrices and Gaussian sums. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001) no. 1, pp. 58-81. http://geodesic.mathdoc.fr/item/JMAG_2001_8_1_a3/