On the Gauss curvature of closed surfaces in $E^3$ and $E^4$
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001) no. 1, pp. 3-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New class of closed surfaces of arbitrary genus in $E^3$ called $p$-symmetrons is introduced. Applying these surfaces closed regular surfaces in $E^4$ are constructed. The behaviour of the Gauss curvature of constructed surfaces is studied by computer methods. It is considered the problem of the constructed of closed surfaces of genus $2$ with negative Gauss curvature in $E^4$ which have regular projection in $E^3$.
@article{JMAG_2001_8_1_a0,
     author = {Yu. A. Aminov and V. A. Gorkavyy},
     title = {On the {Gauss} curvature of closed surfaces in $E^3$ and~$E^4$},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {3--16},
     year = {2001},
     volume = {8},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2001_8_1_a0/}
}
TY  - JOUR
AU  - Yu. A. Aminov
AU  - V. A. Gorkavyy
TI  - On the Gauss curvature of closed surfaces in $E^3$ and $E^4$
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2001
SP  - 3
EP  - 16
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2001_8_1_a0/
LA  - ru
ID  - JMAG_2001_8_1_a0
ER  - 
%0 Journal Article
%A Yu. A. Aminov
%A V. A. Gorkavyy
%T On the Gauss curvature of closed surfaces in $E^3$ and $E^4$
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2001
%P 3-16
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2001_8_1_a0/
%G ru
%F JMAG_2001_8_1_a0
Yu. A. Aminov; V. A. Gorkavyy. On the Gauss curvature of closed surfaces in $E^3$ and $E^4$. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/JMAG_2001_8_1_a0/