Density functions
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 4, pp. 387-414 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study properties of $\rho$-semiadditive functions, $N(\alpha+\beta)\leq N(\alpha)+(1+\alpha)^\rho N\left(\frac\beta{1+\alpha}\right)$. Their theory is similiar to the very investigated one of semiadditive functions. The functions of density $N(\alpha)$=$\limsup r^{-\rho}(f(r+\alpha r)-f(r))$ $(r\to\infty)$ are $\rho$-semiadditive. One of results of the note is an extension of the theorem of Polya (1929) on existence of maximal and minimal densities. We are interested in the question of uniformity in the above limiting relation.
@article{JMAG_2000_7_4_a2,
     author = {A. F. Grishin and T. I. Malyutina},
     title = {Density functions},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {387--414},
     year = {2000},
     volume = {7},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2000_7_4_a2/}
}
TY  - JOUR
AU  - A. F. Grishin
AU  - T. I. Malyutina
TI  - Density functions
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2000
SP  - 387
EP  - 414
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/JMAG_2000_7_4_a2/
LA  - ru
ID  - JMAG_2000_7_4_a2
ER  - 
%0 Journal Article
%A A. F. Grishin
%A T. I. Malyutina
%T Density functions
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2000
%P 387-414
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/JMAG_2000_7_4_a2/
%G ru
%F JMAG_2000_7_4_a2
A. F. Grishin; T. I. Malyutina. Density functions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 4, pp. 387-414. http://geodesic.mathdoc.fr/item/JMAG_2000_7_4_a2/