q-analogues for Green functions for powers of the invariant Laplacian in the unit disc
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 3, pp. 345-365 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the recent work of J. Peetre and M. Englis̆ the explicit formulae were obtained for Green functions of the powers $\Delta$, $\Delta^2$, $\Delta^3$, $\Delta^4$ of the Möbius-invariant Laplace operator in the unit disc ${\mathbb U}\subset{\mathbb C}$. In the present work their q-analogues for $\Delta$, $\Delta^2$ are obtained. By the way a $q$-analogue of the dilogarithm in Rogers' form arises.
@article{JMAG_2000_7_3_a7,
     author = {D. Shklyarov},
     title = {q-analogues for {Green} functions for powers of the invariant {Laplacian} in the unit disc},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {345--365},
     year = {2000},
     volume = {7},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2000_7_3_a7/}
}
TY  - JOUR
AU  - D. Shklyarov
TI  - q-analogues for Green functions for powers of the invariant Laplacian in the unit disc
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2000
SP  - 345
EP  - 365
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2000_7_3_a7/
LA  - en
ID  - JMAG_2000_7_3_a7
ER  - 
%0 Journal Article
%A D. Shklyarov
%T q-analogues for Green functions for powers of the invariant Laplacian in the unit disc
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2000
%P 345-365
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2000_7_3_a7/
%G en
%F JMAG_2000_7_3_a7
D. Shklyarov. q-analogues for Green functions for powers of the invariant Laplacian in the unit disc. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 3, pp. 345-365. http://geodesic.mathdoc.fr/item/JMAG_2000_7_3_a7/