q-analogues for Green functions for powers of the invariant Laplacian in the unit disc
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 3, pp. 345-365
Cet article a éte moissonné depuis la source Math-Net.Ru
In the recent work of J. Peetre and M. Englis̆ the explicit formulae were obtained for Green functions of the powers $\Delta$, $\Delta^2$, $\Delta^3$, $\Delta^4$ of the Möbius-invariant Laplace operator in the unit disc ${\mathbb U}\subset{\mathbb C}$. In the present work their q-analogues for $\Delta$, $\Delta^2$ are obtained. By the way a $q$-analogue of the dilogarithm in Rogers' form arises.
@article{JMAG_2000_7_3_a7,
author = {D. Shklyarov},
title = {q-analogues for {Green} functions for powers of the invariant {Laplacian} in the unit disc},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {345--365},
year = {2000},
volume = {7},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2000_7_3_a7/}
}
TY - JOUR AU - D. Shklyarov TI - q-analogues for Green functions for powers of the invariant Laplacian in the unit disc JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2000 SP - 345 EP - 365 VL - 7 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2000_7_3_a7/ LA - en ID - JMAG_2000_7_3_a7 ER -
D. Shklyarov. q-analogues for Green functions for powers of the invariant Laplacian in the unit disc. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 3, pp. 345-365. http://geodesic.mathdoc.fr/item/JMAG_2000_7_3_a7/