The minimal polynomial for determining of all points of switching in the time optimal control problem
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 3, pp. 308-320 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present work continues the investigations of the authors on analytic solving of the time optimal control problem. The explicit form of a polynomial of minimal power which roots are the points of switching of the time-optimal control for the canonical system is found. On this basis the explicit form of a support vector to the controllability set is given.
@article{JMAG_2000_7_3_a4,
     author = {V. I. Korobov and G. M. Sklyar and V. V. Florinskii},
     title = {The minimal polynomial for determining of all points of switching in the time optimal control problem},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {308--320},
     year = {2000},
     volume = {7},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2000_7_3_a4/}
}
TY  - JOUR
AU  - V. I. Korobov
AU  - G. M. Sklyar
AU  - V. V. Florinskii
TI  - The minimal polynomial for determining of all points of switching in the time optimal control problem
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2000
SP  - 308
EP  - 320
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2000_7_3_a4/
LA  - ru
ID  - JMAG_2000_7_3_a4
ER  - 
%0 Journal Article
%A V. I. Korobov
%A G. M. Sklyar
%A V. V. Florinskii
%T The minimal polynomial for determining of all points of switching in the time optimal control problem
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2000
%P 308-320
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2000_7_3_a4/
%G ru
%F JMAG_2000_7_3_a4
V. I. Korobov; G. M. Sklyar; V. V. Florinskii. The minimal polynomial for determining of all points of switching in the time optimal control problem. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 3, pp. 308-320. http://geodesic.mathdoc.fr/item/JMAG_2000_7_3_a4/