On complex strictly convex complexifications of Banach spaces
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 3, pp. 299-307
Cet article a éte moissonné depuis la source Math-Net.Ru
We show that every real separable normed space may be complexified to a complex strictly convex normed space. The same result is obtained also for some classes of nonseparable spases, for example, for spases $X$ with 1-norming separable subspases in $X^*$; however, a space $\ell_\infty(\Gamma)$ has no complex strictly convex complexifications.
@article{JMAG_2000_7_3_a3,
author = {V. M. Kadets and A. Yu. Kellerman},
title = {On complex strictly convex complexifications of {Banach} spaces},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {299--307},
year = {2000},
volume = {7},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2000_7_3_a3/}
}
TY - JOUR AU - V. M. Kadets AU - A. Yu. Kellerman TI - On complex strictly convex complexifications of Banach spaces JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2000 SP - 299 EP - 307 VL - 7 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2000_7_3_a3/ LA - ru ID - JMAG_2000_7_3_a3 ER -
V. M. Kadets; A. Yu. Kellerman. On complex strictly convex complexifications of Banach spaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 3, pp. 299-307. http://geodesic.mathdoc.fr/item/JMAG_2000_7_3_a3/