On complex strictly convex complexifications of Banach spaces
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 3, pp. 299-307 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that every real separable normed space may be complexified to a complex strictly convex normed space. The same result is obtained also for some classes of nonseparable spases, for example, for spases $X$ with 1-norming separable subspases in $X^*$; however, a space $\ell_\infty(\Gamma)$ has no complex strictly convex complexifications.
@article{JMAG_2000_7_3_a3,
     author = {V. M. Kadets and A. Yu. Kellerman},
     title = {On complex strictly convex complexifications of {Banach} spaces},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {299--307},
     year = {2000},
     volume = {7},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2000_7_3_a3/}
}
TY  - JOUR
AU  - V. M. Kadets
AU  - A. Yu. Kellerman
TI  - On complex strictly convex complexifications of Banach spaces
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2000
SP  - 299
EP  - 307
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2000_7_3_a3/
LA  - ru
ID  - JMAG_2000_7_3_a3
ER  - 
%0 Journal Article
%A V. M. Kadets
%A A. Yu. Kellerman
%T On complex strictly convex complexifications of Banach spaces
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2000
%P 299-307
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2000_7_3_a3/
%G ru
%F JMAG_2000_7_3_a3
V. M. Kadets; A. Yu. Kellerman. On complex strictly convex complexifications of Banach spaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 3, pp. 299-307. http://geodesic.mathdoc.fr/item/JMAG_2000_7_3_a3/