Averaging technique in the periodic decomposition problem
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 2, pp. 184-195
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $T_1$, $T_2$ be a pair of commuting isometries in a Banach space $X$. Generalizing results of M. Laczkovich and Sz. Revesz we prove that in many cases element $x$ of $\mathrm{Ker}[(I-T_1)(I-T_2)]$ can be decomposed as a sum $x_1+x_2$ where $x_k\in\mathrm{Ker}(I-T_k)$, $k=1,2$. Moreover, using an averaging technique we prove the existence of linear operators perfoming such a representation. The results are applicable for decomposition of functions into a sum of periodic ones.
@article{JMAG_2000_7_2_a3,
author = {V. M. Kadets and B. M. Shumyatskiy},
title = {Averaging technique in the periodic decomposition problem},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {184--195},
year = {2000},
volume = {7},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2000_7_2_a3/}
}
V. M. Kadets; B. M. Shumyatskiy. Averaging technique in the periodic decomposition problem. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 2, pp. 184-195. http://geodesic.mathdoc.fr/item/JMAG_2000_7_2_a3/