Averaging technique in the periodic decomposition problem
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 2, pp. 184-195 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $T_1$, $T_2$ be a pair of commuting isometries in a Banach space $X$. Generalizing results of M. Laczkovich and Sz. Revesz we prove that in many cases element $x$ of $\mathrm{Ker}[(I-T_1)(I-T_2)]$ can be decomposed as a sum $x_1+x_2$ where $x_k\in\mathrm{Ker}(I-T_k)$, $k=1,2$. Moreover, using an averaging technique we prove the existence of linear operators perfoming such a representation. The results are applicable for decomposition of functions into a sum of periodic ones.
@article{JMAG_2000_7_2_a3,
     author = {V. M. Kadets and B. M. Shumyatskiy},
     title = {Averaging technique in the periodic decomposition problem},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {184--195},
     year = {2000},
     volume = {7},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2000_7_2_a3/}
}
TY  - JOUR
AU  - V. M. Kadets
AU  - B. M. Shumyatskiy
TI  - Averaging technique in the periodic decomposition problem
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2000
SP  - 184
EP  - 195
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2000_7_2_a3/
LA  - en
ID  - JMAG_2000_7_2_a3
ER  - 
%0 Journal Article
%A V. M. Kadets
%A B. M. Shumyatskiy
%T Averaging technique in the periodic decomposition problem
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2000
%P 184-195
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2000_7_2_a3/
%G en
%F JMAG_2000_7_2_a3
V. M. Kadets; B. M. Shumyatskiy. Averaging technique in the periodic decomposition problem. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 2, pp. 184-195. http://geodesic.mathdoc.fr/item/JMAG_2000_7_2_a3/