Upper estimates for entire functions of $L^1(R)$ on real line
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 2, pp. 172-183 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathcal S_{\rho}$ be the set of all entire functions of order $\rho$ and normal type such that $f(x)\ge 0$ for $x\in\mathbf R$ and $f\in L^1(\mathbf R)$. We prove that: 1) if $f\in\mathcal S_{\rho}$, then $f(x)=o(|x|^{\rho-1})$, $x\to\pm\infty$, 2) for any sequence $\varepsilon_n\downarrow 0$ there exists a function $f\in\mathcal S_{\rho}$ and a real sequence $b_n\to+\infty$ such that $f(b_n)>b_n^{\rho-1-\varepsilon_n}$. We give a generalization of this result for more general growth scale.
@article{JMAG_2000_7_2_a2,
     author = {A. Il'inskii},
     title = {Upper estimates for entire functions of $L^1(R)$ on real line},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {172--183},
     year = {2000},
     volume = {7},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2000_7_2_a2/}
}
TY  - JOUR
AU  - A. Il'inskii
TI  - Upper estimates for entire functions of $L^1(R)$ on real line
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2000
SP  - 172
EP  - 183
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2000_7_2_a2/
LA  - en
ID  - JMAG_2000_7_2_a2
ER  - 
%0 Journal Article
%A A. Il'inskii
%T Upper estimates for entire functions of $L^1(R)$ on real line
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2000
%P 172-183
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2000_7_2_a2/
%G en
%F JMAG_2000_7_2_a2
A. Il'inskii. Upper estimates for entire functions of $L^1(R)$ on real line. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 2, pp. 172-183. http://geodesic.mathdoc.fr/item/JMAG_2000_7_2_a2/