Homogenization of Maxwell equations on manifolds of complicated microstructure
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 1, pp. 91-114
Cet article a éte moissonné depuis la source Math-Net.Ru
The Cauchy problem for the homogeneous system of the Maxwell equations on four-dimensional manifolds $\tilde M_\varepsilon^4=R_+^1\times M_\varepsilon^3$, where $M_\varepsilon^3$ are Riemannian manifolds of a complicated microstructure is considered. $M_\varepsilon^3$ consist of several copies of the space $R^3$ with a large number of holes attached by means of thin tubes. The dependence on a small parameter $\varepsilon>0$ is such that the number of tubes increases and their thickness vanishes, as $\varepsilon\to 0$. The asymptotic behaviour of electromagnetic field without charges and currents on $\tilde M_\varepsilon^4$ is studied as $\varepsilon\to 0$, and it is obtained that the density of electric charge appears in the Maxwell equations as a result of homogenization.
@article{JMAG_2000_7_1_a4,
author = {E. Ya. Khruslov and A. P. Pal-Val},
title = {Homogenization of {Maxwell} equations on manifolds of complicated microstructure},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {91--114},
year = {2000},
volume = {7},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2000_7_1_a4/}
}
TY - JOUR AU - E. Ya. Khruslov AU - A. P. Pal-Val TI - Homogenization of Maxwell equations on manifolds of complicated microstructure JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2000 SP - 91 EP - 114 VL - 7 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2000_7_1_a4/ LA - ru ID - JMAG_2000_7_1_a4 ER -
E. Ya. Khruslov; A. P. Pal-Val. Homogenization of Maxwell equations on manifolds of complicated microstructure. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 1, pp. 91-114. http://geodesic.mathdoc.fr/item/JMAG_2000_7_1_a4/