On embedding of total spaces of fiber bundles over a circle with the Cantor set as a fiber in two-dimensional manifolds
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 1, pp. 66-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of an embedding of total spaces of fiber bundles over a circle with the Cantor set as a fiber (Pontryagin bundles) in two-dimensional manifolds is investigated. The sufficient condition is obtained for nonexistence of a two-dimensional manifold $M^{2}$ and inclusion map $\Phi\colon N\to M^2$ for total space $N$ of the Pontryagin bundle $\xi=(N,p,S^1)$. We also construct the extensive class of spaces satisfying the condition.
@article{JMAG_2000_7_1_a3,
     author = {E. A. Polulyakh},
     title = {On embedding of total spaces of fiber bundles over a~circle with the {Cantor} set as a fiber in two-dimensional manifolds},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {66--90},
     year = {2000},
     volume = {7},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2000_7_1_a3/}
}
TY  - JOUR
AU  - E. A. Polulyakh
TI  - On embedding of total spaces of fiber bundles over a circle with the Cantor set as a fiber in two-dimensional manifolds
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2000
SP  - 66
EP  - 90
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2000_7_1_a3/
LA  - ru
ID  - JMAG_2000_7_1_a3
ER  - 
%0 Journal Article
%A E. A. Polulyakh
%T On embedding of total spaces of fiber bundles over a circle with the Cantor set as a fiber in two-dimensional manifolds
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2000
%P 66-90
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2000_7_1_a3/
%G ru
%F JMAG_2000_7_1_a3
E. A. Polulyakh. On embedding of total spaces of fiber bundles over a circle with the Cantor set as a fiber in two-dimensional manifolds. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 1, pp. 66-90. http://geodesic.mathdoc.fr/item/JMAG_2000_7_1_a3/