On “integration” of non-integrable vector-valued functions
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 1, pp. 49-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new definition of the integral for functions with values in Banach spaces is presented. The new integrability is a weaker property than the Bochner integrability but stronger than the Pettis one. This new definition leads naturally to the notion of the limit set of integral sums, which may be considered as a “generalized integral” for non-integrable functions. This set is shown to be always convex and non-empty when the function has an integrable majorant and the space is separable or reflexive.
@article{JMAG_2000_7_1_a2,
     author = {V. M. Kadets and L. M. Tseytlin},
     title = {On {\textquotedblleft}integration{\textquotedblright} of non-integrable vector-valued functions},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {49--65},
     year = {2000},
     volume = {7},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2000_7_1_a2/}
}
TY  - JOUR
AU  - V. M. Kadets
AU  - L. M. Tseytlin
TI  - On “integration” of non-integrable vector-valued functions
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2000
SP  - 49
EP  - 65
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2000_7_1_a2/
LA  - en
ID  - JMAG_2000_7_1_a2
ER  - 
%0 Journal Article
%A V. M. Kadets
%A L. M. Tseytlin
%T On “integration” of non-integrable vector-valued functions
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2000
%P 49-65
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2000_7_1_a2/
%G en
%F JMAG_2000_7_1_a2
V. M. Kadets; L. M. Tseytlin. On “integration” of non-integrable vector-valued functions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 1, pp. 49-65. http://geodesic.mathdoc.fr/item/JMAG_2000_7_1_a2/