Point realization of Boolean actions of countable inductive limits of locally compact groups
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 1, pp. 35-48
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $G$ be a CILLC-group, i.e., the inductive limit of an increasing sequence of its closed locally compact subgroups. Every nonsingular action of $G$ on a measure space $(X,\mathcal B,\mu)$ generates a continuous action of $G$ on the underlying Boolean $\sigma$-algebra $\mathcal M[\mu]=\mathcal B/I_\mu$, where $I_\mu$ is the ideal of $\mu$-null subsets. It is known that the converse is true for any locally compact $G$: every abstract Boolean $G$-space is associated with some Borel nonsingular action of $G$. In the present work this assertion is generalized to arbitrary CILLC-groups. In addition, we conctruct a free measure preserving action of $G$ on a standard probability space.
@article{JMAG_2000_7_1_a1,
author = {Alexandre I. Danilenko},
title = {Point realization of {Boolean} actions of countable inductive limits of locally compact groups},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {35--48},
year = {2000},
volume = {7},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2000_7_1_a1/}
}
TY - JOUR AU - Alexandre I. Danilenko TI - Point realization of Boolean actions of countable inductive limits of locally compact groups JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2000 SP - 35 EP - 48 VL - 7 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2000_7_1_a1/ LA - en ID - JMAG_2000_7_1_a1 ER -
Alexandre I. Danilenko. Point realization of Boolean actions of countable inductive limits of locally compact groups. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 1, pp. 35-48. http://geodesic.mathdoc.fr/item/JMAG_2000_7_1_a1/