Operator theoretic approach to orthogonal polynomials on an arc of the unit circle
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 1, pp. 3-34
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the probability measures on the unit circle and the multiplication operators acting on appropriate $L^2$ spaces. When such a measure does not satisfy the Szegő condition, orthonormal polynomials form an orthonormal basis in this Hilbert space. The multiplication operator can be represented by an upper Hessenberg matrix. The main result concerns certain infinite-dimensional perturbations of the “constant” Hessenberg matrix which have a finite number of eigenvalues off the essential spectrum.
@article{JMAG_2000_7_1_a0,
author = {{\CYRL}.{\CYRB}. {\CYRG}{\cyro}{\cyrl}{\cyri}{\cyrn}{\cyrs}{\cyrk}{\cyri}{\cyrishrt} and Leonid Golinskii},
title = {Operator theoretic approach to orthogonal polynomials on an arc of the unit circle},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {3--34},
year = {2000},
volume = {7},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2000_7_1_a0/}
}
TY - JOUR AU - Л.Б. Голинский AU - Leonid Golinskii TI - Operator theoretic approach to orthogonal polynomials on an arc of the unit circle JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2000 SP - 3 EP - 34 VL - 7 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2000_7_1_a0/ LA - en ID - JMAG_2000_7_1_a0 ER -
Л.Б. Голинский; Leonid Golinskii. Operator theoretic approach to orthogonal polynomials on an arc of the unit circle. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 7 (2000) no. 1, pp. 3-34. http://geodesic.mathdoc.fr/item/JMAG_2000_7_1_a0/