Asymptotic behaviour of harmonic 1-forms on Riemannian surfaces of increasing genus
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 3, pp. 323-352
Cet article a éte moissonné depuis la source Math-Net.Ru
$2$-dimensional compact oriented Riemannian manifolds $M_\varepsilon$ consisting of one or several copies of some base surface $\Gamma$ with a large number of thin tubes, endowed with a metric depending on a small parameter $\varepsilon$ are considered. The asymptotic behaviour of harmonic 1-forms on $M_\varepsilon$ is studied when the number of tubes increases and their thickness vanishes, as $\varepsilon\to 0$. We obtain the homogenized equations on the base surface $\Gamma$ describing the leading term of the asymptotics.
@article{JMAG_1999_6_3_a9,
author = {A. P. Pal-Val},
title = {Asymptotic behaviour of harmonic 1-forms on {Riemannian} surfaces of increasing genus},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {323--352},
year = {1999},
volume = {6},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_1999_6_3_a9/}
}
TY - JOUR AU - A. P. Pal-Val TI - Asymptotic behaviour of harmonic 1-forms on Riemannian surfaces of increasing genus JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1999 SP - 323 EP - 352 VL - 6 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_1999_6_3_a9/ LA - en ID - JMAG_1999_6_3_a9 ER -
A. P. Pal-Val. Asymptotic behaviour of harmonic 1-forms on Riemannian surfaces of increasing genus. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 3, pp. 323-352. http://geodesic.mathdoc.fr/item/JMAG_1999_6_3_a9/