Completions with respect to total nonnorming subspaces
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 3, pp. 317-322
Cet article a éte moissonné depuis la source Math-Net.Ru
The structure of completions of Banach spaces with respect to total nonnorming subspaces of dual spaces is studied. The obtained results imply, in particular, that such completions can be non-isomorphic to quotients of the space. In a separable case any one of the completions is isomorphic to a completion of $l_1$.
@article{JMAG_1999_6_3_a8,
author = {M. I. Ostrovskii},
title = {Completions with respect to total nonnorming subspaces},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {317--322},
year = {1999},
volume = {6},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_1999_6_3_a8/}
}
M. I. Ostrovskii. Completions with respect to total nonnorming subspaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 3, pp. 317-322. http://geodesic.mathdoc.fr/item/JMAG_1999_6_3_a8/