Completions with respect to total nonnorming subspaces
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 3, pp. 317-322 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The structure of completions of Banach spaces with respect to total nonnorming subspaces of dual spaces is studied. The obtained results imply, in particular, that such completions can be non-isomorphic to quotients of the space. In a separable case any one of the completions is isomorphic to a completion of $l_1$.
@article{JMAG_1999_6_3_a8,
     author = {M. I. Ostrovskii},
     title = {Completions with respect to total nonnorming subspaces},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {317--322},
     year = {1999},
     volume = {6},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1999_6_3_a8/}
}
TY  - JOUR
AU  - M. I. Ostrovskii
TI  - Completions with respect to total nonnorming subspaces
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1999
SP  - 317
EP  - 322
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_1999_6_3_a8/
LA  - en
ID  - JMAG_1999_6_3_a8
ER  - 
%0 Journal Article
%A M. I. Ostrovskii
%T Completions with respect to total nonnorming subspaces
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1999
%P 317-322
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_1999_6_3_a8/
%G en
%F JMAG_1999_6_3_a8
M. I. Ostrovskii. Completions with respect to total nonnorming subspaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 3, pp. 317-322. http://geodesic.mathdoc.fr/item/JMAG_1999_6_3_a8/