Asymptotic behavior of volume of convex sets in Adamar manifold
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 3, pp. 223-233
Cet article a éte moissonné depuis la source Math-Net.Ru
We estimate the limit at infinity of the quotients volume/area for a family of convex with respect to horospheres sets expanding over the whole simply connected complete Riemannian manifold of nonpositive sectional curvature. A similar result is obtained for $\lambda$-convex sets in Hyperbolic space.
@article{JMAG_1999_6_3_a2,
author = {A. A. Borisenko and D. I. Vlasenko},
title = {Asymptotic behavior of volume of convex sets in {Adamar} manifold},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {223--233},
year = {1999},
volume = {6},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_1999_6_3_a2/}
}
TY - JOUR AU - A. A. Borisenko AU - D. I. Vlasenko TI - Asymptotic behavior of volume of convex sets in Adamar manifold JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1999 SP - 223 EP - 233 VL - 6 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_1999_6_3_a2/ LA - ru ID - JMAG_1999_6_3_a2 ER -
A. A. Borisenko; D. I. Vlasenko. Asymptotic behavior of volume of convex sets in Adamar manifold. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 3, pp. 223-233. http://geodesic.mathdoc.fr/item/JMAG_1999_6_3_a2/