Bernstein space $B_\sigma$ as a Banach space
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 3, pp. 372-384
Cet article a éte moissonné depuis la source Math-Net.Ru
Bernstein space $B_\sigma$ consists of all exponential type, less than or equal to $\sigma$, entire functions bounded on $\mathbf R$. $B_\sigma$ equipped with a sup-norm is proved to be a non-separable Banach space non-isomorphic to $\ell_{\infty}$ but involving an isometric copy of $\ell_{\infty}$. $B_\sigma$ is proved to be non-complemented in $B_\rho$, $\sigma<\rho$; $B_\sigma$ is also proved to be isometric to a second dual of its subspace $B_\sigma^0$ consisting of functions tending to zero along $\mathbf R$. The coincidence of weak and norm convergence of sequences (Schur property) in the dual of $B_\sigma^0$ is proved.
@article{JMAG_1999_6_3_a12,
author = {B. M. Shumyatskiy},
title = {Bernstein space $B_\sigma$ as a {Banach} space},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {372--384},
year = {1999},
volume = {6},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_1999_6_3_a12/}
}
B. M. Shumyatskiy. Bernstein space $B_\sigma$ as a Banach space. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 3, pp. 372-384. http://geodesic.mathdoc.fr/item/JMAG_1999_6_3_a12/