A representation of linear functionals on some class of holomorphic functions in the unit disk
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 3, pp. 361-371
Cet article a éte moissonné depuis la source Math-Net.Ru
A description is given for the dual space to the class of holomorphic functions in $\mathbb D=\{z:|z|<1\}$ such that $\lim\limits_{r\to 1-0}\frac{(1-r)^2}{\omega(1-r)}D^{\alpha+2}(f(re^{i\varphi}))=0$, uniformly in $\varphi$, $\omega(\delta)$ being a function of modulus of continuity type, $\alpha\geq0$. The result extends a known Duren–Romberg–Shields theorem on the dual space to the class $\lambda_{\alpha}^{(n)}$, $0<\alpha\le1$, $n\geq0$.
@article{JMAG_1999_6_3_a11,
author = {R. F. Shamoyan},
title = {A representation of linear functionals on some class of holomorphic functions in the unit disk},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {361--371},
year = {1999},
volume = {6},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_1999_6_3_a11/}
}
TY - JOUR AU - R. F. Shamoyan TI - A representation of linear functionals on some class of holomorphic functions in the unit disk JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1999 SP - 361 EP - 371 VL - 6 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_1999_6_3_a11/ LA - ru ID - JMAG_1999_6_3_a11 ER -
R. F. Shamoyan. A representation of linear functionals on some class of holomorphic functions in the unit disk. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 3, pp. 361-371. http://geodesic.mathdoc.fr/item/JMAG_1999_6_3_a11/