Asymptotic solitons of solution of the Korteveg–de Vries equation in the neighbourhood of back front
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 3, pp. 199-212 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The long time asymptotic behavior of the Cauchy problem solution of the Korteweg–de Vries equation with reflectionless nondecreasing initial data is studied. The data is assumed to be vanishing as $x\to-\infty$ and tend to a periodic function as $x\to+\infty$. It is shown that in a neighbourhood of the back front this solution splits in the infinite series of slow asymptotic solitons as $t\to\infty$. The explicit formulae which describe this phenomenon are obtained.
@article{JMAG_1999_6_3_a0,
     author = {V. B. Baranetskii},
     title = {Asymptotic solitons of solution of the {Korteveg{\textendash}de~Vries} equation in the neighbourhood of back front},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {199--212},
     year = {1999},
     volume = {6},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1999_6_3_a0/}
}
TY  - JOUR
AU  - V. B. Baranetskii
TI  - Asymptotic solitons of solution of the Korteveg–de Vries equation in the neighbourhood of back front
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1999
SP  - 199
EP  - 212
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_1999_6_3_a0/
LA  - ru
ID  - JMAG_1999_6_3_a0
ER  - 
%0 Journal Article
%A V. B. Baranetskii
%T Asymptotic solitons of solution of the Korteveg–de Vries equation in the neighbourhood of back front
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1999
%P 199-212
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_1999_6_3_a0/
%G ru
%F JMAG_1999_6_3_a0
V. B. Baranetskii. Asymptotic solitons of solution of the Korteveg–de Vries equation in the neighbourhood of back front. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 3, pp. 199-212. http://geodesic.mathdoc.fr/item/JMAG_1999_6_3_a0/