Generatrix of catenoid of space 3-form
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 1, pp. 81-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Constant mean curvature surfaces of revolution in euclidean 3-space are known as surfaces of Ch. Delaunay. They possess one remarkable property: their profile curves (generatrices) are the trajectories of focuses of conic sections by its rolling along the straight line. Analogous construction is realized in the space forms $H^3$ and $S^3$ in the case of minimal surfaces of revolution and the following theorem is proved. Theorem. Generatrix of catenoid of revolution of space form $H^3(S^3)$ is the trajectory of focus of hyperbolic (spherical) parabola by its rolling along the geodesic ray.
@article{JMAG_1999_6_1_a5,
     author = {L. A. Masaltsev},
     title = {Generatrix of catenoid of space 3-form},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {81--99},
     year = {1999},
     volume = {6},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1999_6_1_a5/}
}
TY  - JOUR
AU  - L. A. Masaltsev
TI  - Generatrix of catenoid of space 3-form
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1999
SP  - 81
EP  - 99
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_1999_6_1_a5/
LA  - en
ID  - JMAG_1999_6_1_a5
ER  - 
%0 Journal Article
%A L. A. Masaltsev
%T Generatrix of catenoid of space 3-form
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1999
%P 81-99
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_1999_6_1_a5/
%G en
%F JMAG_1999_6_1_a5
L. A. Masaltsev. Generatrix of catenoid of space 3-form. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 1, pp. 81-99. http://geodesic.mathdoc.fr/item/JMAG_1999_6_1_a5/