General scheme of solution interpolation problem in Stieltjes class based on consistent representation of the pair of the non-negative operators. I
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 1, pp. 30-54
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $G_1$ and $G_2$ — Hilbert space and $K_1\ge0$, $K_2\ge0$ — two non-negative and bounded operators in $G_1$ and $G_2$. Let the operators be connected by the Fundamental Identity $L_2K_2-K_1L_1=v_1u_2^*$. Here $L_2$ and $L_1$ are bounded operators from $G_2$ to $G_1$; and $v_1$ and $u_2$ are bounded operators from Hilbert space $H$ to $G_1$ and $G_2$. We need to find in what conditions operators $K_1$ and $K_2$ posses the consistent integral representation having form $$ K_r=\int\limits_0^{\infty}R_{T_r}(t)v_rt^{r-t}\,d\sigma(t)v_r^*R^*_{T_r}(t)+W_r+(r-1)FF^*, \quad r=1, 2. $$ Here $T_1=L_2L_1^*$, $T_2=L_1^*L_2$, $v_2=L^*_1v_1$, $W_1\ge0$, $W_1L_1=0$, $L_2F=v_1\gamma^{1/2}$, $W_2\ge0$, $L_2W_2=0$, $R_{T_1}(z)=(I-zT_1)^{-1}$, $R_{T_2}(z)=(I-zT_2)^{-1}$, $\sigma(t)$ — non-decreasing function defined on interval $[0; +\infty)$ and having values in the set of bounded hermitian operators, acting in $H$, $\gamma\geq0$ is operator in space $H$. This problem is shown to have the Stieltjes moment problem in itself, as well as Nevanlinna–Pick and Carathéodory interpolation problems.
@article{JMAG_1999_6_1_a3,
author = {Yu. M. Dyukarev},
title = {General scheme of solution interpolation problem in {Stieltjes} class based on consistent representation of the pair of the non-negative {operators.~I}},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {30--54},
year = {1999},
volume = {6},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_1999_6_1_a3/}
}
TY - JOUR AU - Yu. M. Dyukarev TI - General scheme of solution interpolation problem in Stieltjes class based on consistent representation of the pair of the non-negative operators. I JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1999 SP - 30 EP - 54 VL - 6 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_1999_6_1_a3/ LA - ru ID - JMAG_1999_6_1_a3 ER -
%0 Journal Article %A Yu. M. Dyukarev %T General scheme of solution interpolation problem in Stieltjes class based on consistent representation of the pair of the non-negative operators. I %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 1999 %P 30-54 %V 6 %N 1 %U http://geodesic.mathdoc.fr/item/JMAG_1999_6_1_a3/ %G ru %F JMAG_1999_6_1_a3
Yu. M. Dyukarev. General scheme of solution interpolation problem in Stieltjes class based on consistent representation of the pair of the non-negative operators. I. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 1, pp. 30-54. http://geodesic.mathdoc.fr/item/JMAG_1999_6_1_a3/