The bimodal approximate solution of the Boltzmann equation in the sence of distributions
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 1, pp. 22-29
Cet article a éte moissonné depuis la source Math-Net.Ru
An approximation of the solution of the nonlinear three-dimensional Boltzmann equation for hard spheres in the sence of distributions is proposed. The approximate solution is built as a spatially-nonhomogeneous nonstationary linear combination of two $\delta$-functions on velocity, which are concentrated at different points. It is shown that the error between the left and the right sides of the equation may be reduced to arbitrary small values when parameters, involved in distribution, tend to their limit values, in particular, when the mass velocities at $+\infty$ and $-\infty$ are different but the Knudsen number is quite large.
@article{JMAG_1999_6_1_a2,
author = {V. D. Gordevskii and Yu. A. Sysoyeva},
title = {The bimodal approximate solution of the {Boltzmann~equation} in the sence of distributions},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {22--29},
year = {1999},
volume = {6},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_1999_6_1_a2/}
}
TY - JOUR AU - V. D. Gordevskii AU - Yu. A. Sysoyeva TI - The bimodal approximate solution of the Boltzmann equation in the sence of distributions JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1999 SP - 22 EP - 29 VL - 6 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_1999_6_1_a2/ LA - ru ID - JMAG_1999_6_1_a2 ER -
%0 Journal Article %A V. D. Gordevskii %A Yu. A. Sysoyeva %T The bimodal approximate solution of the Boltzmann equation in the sence of distributions %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 1999 %P 22-29 %V 6 %N 1 %U http://geodesic.mathdoc.fr/item/JMAG_1999_6_1_a2/ %G ru %F JMAG_1999_6_1_a2
V. D. Gordevskii; Yu. A. Sysoyeva. The bimodal approximate solution of the Boltzmann equation in the sence of distributions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 1, pp. 22-29. http://geodesic.mathdoc.fr/item/JMAG_1999_6_1_a2/