Strongly parabolic timelike submanifolds of Minkowsky space
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 1, pp. 10-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

R. P. Newman proved that a timelike geodesically complete pseudo-Riemannian manifold with nonnegative Ricci curvature for all vectors and admites a timelike line is isometric to the product of that line and a spacelike complete Riemannian manifold. This result gave a complete proof of a conjecture of Yau. In this paper we proof a cylinder type-theorem which corresponds to the extrinsic version of Newman's result. Moreover, we show that $k$-strongly parabolic geodesically complete submanifolds of a pseudo-Euclidean space with nonnegative Ricci curvature in the spacelike directions are also cylinders with $k$-dimensional generators.
@article{JMAG_1999_6_1_a1,
     author = {A. Borisenko and M. L. Rabelo and K. Tenenblat},
     title = {Strongly parabolic timelike submanifolds of {Minkowsky} space},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {10--21},
     year = {1999},
     volume = {6},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1999_6_1_a1/}
}
TY  - JOUR
AU  - A. Borisenko
AU  - M. L. Rabelo
AU  - K. Tenenblat
TI  - Strongly parabolic timelike submanifolds of Minkowsky space
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1999
SP  - 10
EP  - 21
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_1999_6_1_a1/
LA  - en
ID  - JMAG_1999_6_1_a1
ER  - 
%0 Journal Article
%A A. Borisenko
%A M. L. Rabelo
%A K. Tenenblat
%T Strongly parabolic timelike submanifolds of Minkowsky space
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1999
%P 10-21
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_1999_6_1_a1/
%G en
%F JMAG_1999_6_1_a1
A. Borisenko; M. L. Rabelo; K. Tenenblat. Strongly parabolic timelike submanifolds of Minkowsky space. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 1, pp. 10-21. http://geodesic.mathdoc.fr/item/JMAG_1999_6_1_a1/