Strongly parabolic timelike submanifolds of Minkowsky space
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 1, pp. 10-21
Cet article a éte moissonné depuis la source Math-Net.Ru
R. P. Newman proved that a timelike geodesically complete pseudo-Riemannian manifold with nonnegative Ricci curvature for all vectors and admites a timelike line is isometric to the product of that line and a spacelike complete Riemannian manifold. This result gave a complete proof of a conjecture of Yau. In this paper we proof a cylinder type-theorem which corresponds to the extrinsic version of Newman's result. Moreover, we show that $k$-strongly parabolic geodesically complete submanifolds of a pseudo-Euclidean space with nonnegative Ricci curvature in the spacelike directions are also cylinders with $k$-dimensional generators.
@article{JMAG_1999_6_1_a1,
author = {A. Borisenko and M. L. Rabelo and K. Tenenblat},
title = {Strongly parabolic timelike submanifolds of {Minkowsky} space},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {10--21},
year = {1999},
volume = {6},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_1999_6_1_a1/}
}
TY - JOUR AU - A. Borisenko AU - M. L. Rabelo AU - K. Tenenblat TI - Strongly parabolic timelike submanifolds of Minkowsky space JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1999 SP - 10 EP - 21 VL - 6 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_1999_6_1_a1/ LA - en ID - JMAG_1999_6_1_a1 ER -
A. Borisenko; M. L. Rabelo; K. Tenenblat. Strongly parabolic timelike submanifolds of Minkowsky space. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 1, pp. 10-21. http://geodesic.mathdoc.fr/item/JMAG_1999_6_1_a1/