An example of isometric immersion of a domain of 3-dimensional Lobachevsky space into $E^6$ with a section as the Veronese surface
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 1, pp. 3-9
Cet article a éte moissonné depuis la source Math-Net.Ru
Some example of isometric immersion of a domain of the Lobachevsky space $L^3$ into $E^6$ is constructed in such a way that every intersection of the obtained submanifold with coordinate hyperplane $x^6=const$ be the Veronese surface. The submanifold is not orientable and admits a $2$-parametric family of motions along itself. It is also proved general statements on existence of immersions of some domain of $L^3$ into $E^k$, $k>5$, in the form of special submanifolds.
@article{JMAG_1999_6_1_a0,
author = {Yu. A. Aminov and O. A. Goncharova},
title = {An example of isometric immersion of a domain of 3-dimensional {Lobachevsky} space into $E^6$ with a section as the {Veronese} surface},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {3--9},
year = {1999},
volume = {6},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_1999_6_1_a0/}
}
TY - JOUR AU - Yu. A. Aminov AU - O. A. Goncharova TI - An example of isometric immersion of a domain of 3-dimensional Lobachevsky space into $E^6$ with a section as the Veronese surface JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1999 SP - 3 EP - 9 VL - 6 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_1999_6_1_a0/ LA - en ID - JMAG_1999_6_1_a0 ER -
%0 Journal Article %A Yu. A. Aminov %A O. A. Goncharova %T An example of isometric immersion of a domain of 3-dimensional Lobachevsky space into $E^6$ with a section as the Veronese surface %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 1999 %P 3-9 %V 6 %N 1 %U http://geodesic.mathdoc.fr/item/JMAG_1999_6_1_a0/ %G en %F JMAG_1999_6_1_a0
Yu. A. Aminov; O. A. Goncharova. An example of isometric immersion of a domain of 3-dimensional Lobachevsky space into $E^6$ with a section as the Veronese surface. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 6 (1999) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/JMAG_1999_6_1_a0/