On an isometric representation with the maximal set of spectral subspaces
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998) no. 3, pp. 297-303
Cet article a éte moissonné depuis la source Math-Net.Ru
It was proved the theorem. Let $G$ be a locally compact noncompact separable Abelian group. Then there exists an isometric representation of the group $G$ in a Banach space $X$ without eigenvectors for which any spectral subspace $L(K)\ne\{0\}$ if $K$ contains a nonempty perfect subset.
@article{JMAG_1998_5_3_a9,
author = {G. M. Feldman and G. Muraz},
title = {On an isometric representation with the maximal set of spectral subspaces},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {297--303},
year = {1998},
volume = {5},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_1998_5_3_a9/}
}
TY - JOUR AU - G. M. Feldman AU - G. Muraz TI - On an isometric representation with the maximal set of spectral subspaces JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1998 SP - 297 EP - 303 VL - 5 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_1998_5_3_a9/ LA - en ID - JMAG_1998_5_3_a9 ER -
G. M. Feldman; G. Muraz. On an isometric representation with the maximal set of spectral subspaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998) no. 3, pp. 297-303. http://geodesic.mathdoc.fr/item/JMAG_1998_5_3_a9/