Monge–Ampère operators and Jessen functions of holomorphic almost periodic mappings
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998) no. 3, pp. 274-296
Cet article a éte moissonné depuis la source Math-Net.Ru
For a holomorphic almost periodic mapping $f$ from a tube domain of ${\mathbf C}^n$ into ${\mathbf C}^q$, the properties of its Jessen function, i.e., the mean value of the function $\log|f|^2$, are studied. In particular, certain relations between the Jessen function and behavior of the mapping and its zero set are obtained. To this end certain operators $\Phi_l$ on plurisubharmonic functions are introduced in a way that for a smooth function $u$, $$ (\Phi_l[u])^l\,(dd^c|z|^2)^n=(dd^cu)^l\wedge(dd^c|z|^2)^{n-l}. $$
@article{JMAG_1998_5_3_a8,
author = {Alexander Rashkovskii},
title = {Monge{\textendash}Amp\`ere operators and {Jessen} functions of holomorphic almost periodic mappings},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {274--296},
year = {1998},
volume = {5},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_1998_5_3_a8/}
}
TY - JOUR AU - Alexander Rashkovskii TI - Monge–Ampère operators and Jessen functions of holomorphic almost periodic mappings JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1998 SP - 274 EP - 296 VL - 5 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_1998_5_3_a8/ LA - en ID - JMAG_1998_5_3_a8 ER -
Alexander Rashkovskii. Monge–Ampère operators and Jessen functions of holomorphic almost periodic mappings. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998) no. 3, pp. 274-296. http://geodesic.mathdoc.fr/item/JMAG_1998_5_3_a8/