Homogenization of semilinear parabolic equations with asymptotically degenerating coefficients
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998) no. 3, pp. 250-273
Cet article a éte moissonné depuis la source Math-Net.Ru
An initial boundary value problem for semilinear parabolic equation $$ \frac{\partial u^\varepsilon}{\partial t}-\sum_{i,j=1}^n \frac{\partial}{\partial x_i}\left(a^\varepsilon_{ij}(x)\frac{\partial u^\varepsilon}{\partial x_j}\right)+f(u^\varepsilon)=h^\varepsilon (x), \qquad x\in \Omega, \quad t\in(0,T), $$ with the coefficients $a^\varepsilon_{ij}(x)$ depending on a small parameter $\varepsilon$ is considered. We suppose that $a^\varepsilon_{ij}(x)$ are of the order of $\varepsilon^{3+\gamma}$ $(0\le \gamma<1)$ on a set of spherical annuluses $G^\alpha_\varepsilon$ of a thickness $d_\varepsilon = d\varepsilon^{2+\gamma}$. The annuluses are periodically with a period $\varepsilon$ distributed in $\Omega$. On the set $\Omega\setminus U_\alpha G^\alpha_\varepsilon$ these coefficients are constants. We study the asymptotical behaviour of the solutions $u^\varepsilon(x,t)$ of the problem as $\varepsilon \rightarrow 0$. It is shown that the asymptotic behaviour of the solutions is described by a system of a parabolic p.d.e. coupled with an o.d.e.
@article{JMAG_1998_5_3_a7,
author = {L. Pankratov},
title = {Homogenization of semilinear parabolic equations with asymptotically degenerating coefficients},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {250--273},
year = {1998},
volume = {5},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_1998_5_3_a7/}
}
TY - JOUR AU - L. Pankratov TI - Homogenization of semilinear parabolic equations with asymptotically degenerating coefficients JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1998 SP - 250 EP - 273 VL - 5 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_1998_5_3_a7/ LA - en ID - JMAG_1998_5_3_a7 ER -
L. Pankratov. Homogenization of semilinear parabolic equations with asymptotically degenerating coefficients. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998) no. 3, pp. 250-273. http://geodesic.mathdoc.fr/item/JMAG_1998_5_3_a7/