A characterization of some even vector-valued Sturm–Liouville problems
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998) no. 3, pp. 166-181
Cet article a éte moissonné depuis la source Math-Net.Ru
We call “even” a Sturm–Liouville problem \begin{gather} -y''+Q(x)y=\lambda y, \quad 0\leq x\leq\pi, \tag{1} \\ y'(0)-hy(0)=0, \tag{2} \\ y'(\pi)+Hy(\pi)=0, \tag{3} \end{gather} in which $H=h$ and $Q(\pi-x)\equiv Q(x)$ on $[0,\pi]$. In this paper we study the vector-valued case, where the potential $Q(x)$ is a real symmetric $d\times d$ matrix for each $x$ in $[0,\pi],$ and the entries of $Q$ and their first derivatives (in the distribution sense) are all in $L^2[0,\pi]$. We assume that $h$ and $H$ are real symmetric $d\times d$ matrices. We prove that a vector-valued Sturm–Liouville problem (1)–(3) is even if and only if, for each eigenvalue $\lambda$, whose multiplicity is $r=r_{\lambda}$ (where $1\le r\le d$, and where $\varphi_1(x,\lambda),\dots,\varphi_r(x,\lambda)$ denote orthonormal eigenfunctions belonging to $\lambda$), there exists an $r\times r$ matrix $A=(a_{ij})$ (which may depend on $\lambda$ and on the choice of basis $\{\varphi_i(x,\lambda)\}_{i=1}^r$, but does not depend on $x$) such that (1) A is orthogonal and symmetric, and (2) for $1\le i\le r$, $\varphi_i(\pi,\lambda)=\sum_{j=1}^ra_{ij}\varphi_j(0,\lambda)$. \noindent To some extent our theorem can be considered a generalization of N. Levinson's results in [2].
@article{JMAG_1998_5_3_a2,
author = {Max Jodeit and Jr. and B. M. Levitan},
title = {A characterization of some even vector-valued {Sturm{\textendash}Liouville} problems},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {166--181},
year = {1998},
volume = {5},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_1998_5_3_a2/}
}
TY - JOUR AU - Max Jodeit AU - Jr. AU - B. M. Levitan TI - A characterization of some even vector-valued Sturm–Liouville problems JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1998 SP - 166 EP - 181 VL - 5 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_1998_5_3_a2/ LA - en ID - JMAG_1998_5_3_a2 ER -
Max Jodeit; Jr.; B. M. Levitan. A characterization of some even vector-valued Sturm–Liouville problems. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998) no. 3, pp. 166-181. http://geodesic.mathdoc.fr/item/JMAG_1998_5_3_a2/