Closed surfaces in $E^4$ with nonvanishing Whitney's invariant
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998) no. 3, pp. 139-148
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove the existence of two-dimensional closed regular orientable surfaces of an arbitrary topological type in $E^4$ that do not have a regular vector field. An example of such surfaces is constructed. Their geometrical properties are investigated.
@article{JMAG_1998_5_3_a0,
author = {Yu. A. Aminov and N. V. Manzhos},
title = {Closed surfaces in $E^4$ with nonvanishing {Whitney's} invariant},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {139--148},
year = {1998},
volume = {5},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_1998_5_3_a0/}
}
TY - JOUR AU - Yu. A. Aminov AU - N. V. Manzhos TI - Closed surfaces in $E^4$ with nonvanishing Whitney's invariant JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1998 SP - 139 EP - 148 VL - 5 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_1998_5_3_a0/ LA - ru ID - JMAG_1998_5_3_a0 ER -
Yu. A. Aminov; N. V. Manzhos. Closed surfaces in $E^4$ with nonvanishing Whitney's invariant. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998) no. 3, pp. 139-148. http://geodesic.mathdoc.fr/item/JMAG_1998_5_3_a0/