On the Grassmanian image of submanifolds $F^n\subset E^{n+m}$ in which codimension does not exceed the dimension
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998) no. 1, pp. 125-133
Cet article a éte moissonné depuis la source Math-Net.Ru
A. A. Borisenko's hypothesis is studied: every tangent space of the Grassman image of a regular submanifold $F^n\subset E^{n+m}$ contains a two-dimensional plane $\pi$ such that the sectional curvature of the Grassman manifold $G_{n,n+m}$ in $\pi$ is less or equal to $1$.
@article{JMAG_1998_5_1_a9,
author = {V. M. Savel'ev},
title = {On the {Grassmanian} image of submanifolds $F^n\subset E^{n+m}$ in which codimension does not exceed the dimension},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {125--133},
year = {1998},
volume = {5},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_1998_5_1_a9/}
}
TY - JOUR
AU - V. M. Savel'ev
TI - On the Grassmanian image of submanifolds $F^n\subset E^{n+m}$ in which codimension does not exceed the dimension
JO - Žurnal matematičeskoj fiziki, analiza, geometrii
PY - 1998
SP - 125
EP - 133
VL - 5
IS - 1
UR - http://geodesic.mathdoc.fr/item/JMAG_1998_5_1_a9/
LA - ru
ID - JMAG_1998_5_1_a9
ER -
%0 Journal Article
%A V. M. Savel'ev
%T On the Grassmanian image of submanifolds $F^n\subset E^{n+m}$ in which codimension does not exceed the dimension
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1998
%P 125-133
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_1998_5_1_a9/
%G ru
%F JMAG_1998_5_1_a9
V. M. Savel'ev. On the Grassmanian image of submanifolds $F^n\subset E^{n+m}$ in which codimension does not exceed the dimension. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998) no. 1, pp. 125-133. http://geodesic.mathdoc.fr/item/JMAG_1998_5_1_a9/