Projections of $k$-dimensional subsets of $\mathbf R^n$ onto $k$-dimensional planes
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998) no. 1, pp. 114-124
Cet article a éte moissonné depuis la source Math-Net.Ru
Some properties of projections of sets with non-vanishing Hausdorff $k$-measure onto $k$-planes are studied. It is stated that there is a wide class of $k$-planes in $\mathbf R^n$ such that a projection of a closed $k$-dimensional set onto any plane of that class has dimension equal to $k$.
@article{JMAG_1998_5_1_a8,
author = {M. A. Pankov},
title = {Projections of $k$-dimensional subsets of $\mathbf R^n$ onto $k$-dimensional planes},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {114--124},
year = {1998},
volume = {5},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_1998_5_1_a8/}
}
TY - JOUR AU - M. A. Pankov TI - Projections of $k$-dimensional subsets of $\mathbf R^n$ onto $k$-dimensional planes JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1998 SP - 114 EP - 124 VL - 5 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_1998_5_1_a8/ LA - en ID - JMAG_1998_5_1_a8 ER -
M. A. Pankov. Projections of $k$-dimensional subsets of $\mathbf R^n$ onto $k$-dimensional planes. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998) no. 1, pp. 114-124. http://geodesic.mathdoc.fr/item/JMAG_1998_5_1_a8/