Projections of $k$-dimensional subsets of $\mathbf R^n$ onto $k$-dimensional planes
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998) no. 1, pp. 114-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some properties of projections of sets with non-vanishing Hausdorff $k$-measure onto $k$-planes are studied. It is stated that there is a wide class of $k$-planes in $\mathbf R^n$ such that a projection of a closed $k$-dimensional set onto any plane of that class has dimension equal to $k$.
@article{JMAG_1998_5_1_a8,
     author = {M. A. Pankov},
     title = {Projections of $k$-dimensional subsets of $\mathbf R^n$ onto $k$-dimensional planes},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {114--124},
     year = {1998},
     volume = {5},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1998_5_1_a8/}
}
TY  - JOUR
AU  - M. A. Pankov
TI  - Projections of $k$-dimensional subsets of $\mathbf R^n$ onto $k$-dimensional planes
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1998
SP  - 114
EP  - 124
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_1998_5_1_a8/
LA  - en
ID  - JMAG_1998_5_1_a8
ER  - 
%0 Journal Article
%A M. A. Pankov
%T Projections of $k$-dimensional subsets of $\mathbf R^n$ onto $k$-dimensional planes
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1998
%P 114-124
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_1998_5_1_a8/
%G en
%F JMAG_1998_5_1_a8
M. A. Pankov. Projections of $k$-dimensional subsets of $\mathbf R^n$ onto $k$-dimensional planes. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998) no. 1, pp. 114-124. http://geodesic.mathdoc.fr/item/JMAG_1998_5_1_a8/