A result on polynomials and its relation to another, concerning entire functions of exponential type
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998) no. 1, pp. 68-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Beurling–Malliavin multiplier theorem is deduced from the first result stated in the introduction, on polynomials. Work is largely based on de Branges' description of the extremal annihilating measures corresponding to certain spaces of bounded functions generated by weighted imaginary exponentials.
@article{JMAG_1998_5_1_a5,
     author = {Paul Koosis},
     title = {A result on polynomials and its relation to another, concerning entire functions of exponential type},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {68--86},
     year = {1998},
     volume = {5},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1998_5_1_a5/}
}
TY  - JOUR
AU  - Paul Koosis
TI  - A result on polynomials and its relation to another, concerning entire functions of exponential type
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1998
SP  - 68
EP  - 86
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_1998_5_1_a5/
LA  - en
ID  - JMAG_1998_5_1_a5
ER  - 
%0 Journal Article
%A Paul Koosis
%T A result on polynomials and its relation to another, concerning entire functions of exponential type
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1998
%P 68-86
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_1998_5_1_a5/
%G en
%F JMAG_1998_5_1_a5
Paul Koosis. A result on polynomials and its relation to another, concerning entire functions of exponential type. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998) no. 1, pp. 68-86. http://geodesic.mathdoc.fr/item/JMAG_1998_5_1_a5/