Algebraical surfaces with planes of skew symmetry
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998) no. 1, pp. 35-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G$ be an infinite group generated by skew reflections with respect to hyperplanes in a real space $E^m$; $\mu_j$-planes $\Pi^{\mu_j}=\Pi^{d_j}\oplus\Pi^{\gamma_j}$ ($j=\overline{0, 3}$; $\gamma_0\ge\gamma_1\ge\gamma_2\ge\gamma_3$) be linear envelopes of the $G({\mathbf u})$-orbits of directions of symmetry ${\mathbf u}({\mathbf u}{\not\,\parallel}\Pi^{\gamma_j})$. We consider a case where $\dim\sum_k\Pi^{\gamma_k}=\sum_k{\gamma_k}$ and $\dim\left( \Pi^{\gamma_3}\cap\sum_k\Pi^{\gamma_k}\right)>0$ ($k=0,1,2$). It is proved that for any disposition of $\Pi^{\gamma_j}$ there exists the such an invariant of a certain $G$, the symmetry group of which is non-extended.
@article{JMAG_1998_5_1_a3,
     author = {V. F. Ignatenko},
     title = {Algebraical surfaces with planes of skew symmetry},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {35--48},
     year = {1998},
     volume = {5},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1998_5_1_a3/}
}
TY  - JOUR
AU  - V. F. Ignatenko
TI  - Algebraical surfaces with planes of skew symmetry
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1998
SP  - 35
EP  - 48
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_1998_5_1_a3/
LA  - ru
ID  - JMAG_1998_5_1_a3
ER  - 
%0 Journal Article
%A V. F. Ignatenko
%T Algebraical surfaces with planes of skew symmetry
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1998
%P 35-48
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_1998_5_1_a3/
%G ru
%F JMAG_1998_5_1_a3
V. F. Ignatenko. Algebraical surfaces with planes of skew symmetry. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998) no. 1, pp. 35-48. http://geodesic.mathdoc.fr/item/JMAG_1998_5_1_a3/