Some new generalizations of the Lyapunov convexity theorem
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998) no. 1, pp. 15-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that Schreier's space, Lorentz sequence spaces, and Baernstein's spaces, which contain no subspaces isomorphic to $l_2$, have the Lyapunov property.
@article{JMAG_1998_5_1_a1,
     author = {O. Vladimirskaya},
     title = {Some new generalizations of the {Lyapunov} convexity theorem},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {15--24},
     year = {1998},
     volume = {5},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1998_5_1_a1/}
}
TY  - JOUR
AU  - O. Vladimirskaya
TI  - Some new generalizations of the Lyapunov convexity theorem
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1998
SP  - 15
EP  - 24
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_1998_5_1_a1/
LA  - en
ID  - JMAG_1998_5_1_a1
ER  - 
%0 Journal Article
%A O. Vladimirskaya
%T Some new generalizations of the Lyapunov convexity theorem
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1998
%P 15-24
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_1998_5_1_a1/
%G en
%F JMAG_1998_5_1_a1
O. Vladimirskaya. Some new generalizations of the Lyapunov convexity theorem. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 5 (1998) no. 1, pp. 15-24. http://geodesic.mathdoc.fr/item/JMAG_1998_5_1_a1/