Multilevel Landau–Zener formulae: adiabatic reduction on a complex path
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (1997) no. 3, pp. 360-390 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider, in the semi-classical (adiabatic) limit, evolution equations whose generators extend into a strip around real axis as a holomorphic family of operators (with respect to the time-variable). The asymptotic expansion of the $\mathbb S$-matrix associated to this evolution can be expressed in terms of simple quantities attached to the singularities for the spectrum of Hamiltonians from complex-time plane. We extend to many-level case the result from [26] which contains as limit cases both the Landau–Zener formula and Friedrichs–Hagedorn results for this problem.
@article{JMAG_1997_4_3_a7,
     author = {Gabriel Firica},
     title = {Multilevel {Landau{\textendash}Zener} formulae: adiabatic reduction on a complex path},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {360--390},
     year = {1997},
     volume = {4},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1997_4_3_a7/}
}
TY  - JOUR
AU  - Gabriel Firica
TI  - Multilevel Landau–Zener formulae: adiabatic reduction on a complex path
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1997
SP  - 360
EP  - 390
VL  - 4
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_1997_4_3_a7/
LA  - en
ID  - JMAG_1997_4_3_a7
ER  - 
%0 Journal Article
%A Gabriel Firica
%T Multilevel Landau–Zener formulae: adiabatic reduction on a complex path
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1997
%P 360-390
%V 4
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_1997_4_3_a7/
%G en
%F JMAG_1997_4_3_a7
Gabriel Firica. Multilevel Landau–Zener formulae: adiabatic reduction on a complex path. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (1997) no. 3, pp. 360-390. http://geodesic.mathdoc.fr/item/JMAG_1997_4_3_a7/