A representation of isometries on function spaces
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (1997) no. 3, pp. 339-347
Cet article a éte moissonné depuis la source Math-Net.Ru
The main result states that every surjective isometry between two ideal Banach lattices of mesurable functions which satisfy certain conditions, can be represented as composition of an operator of mesurable change of variable and an operator of multiplication by a mesurable function.
@article{JMAG_1997_4_3_a5,
author = {Mikhail G. Zaidenberg},
title = {A representation of isometries on function spaces},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {339--347},
year = {1997},
volume = {4},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_1997_4_3_a5/}
}
Mikhail G. Zaidenberg. A representation of isometries on function spaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (1997) no. 3, pp. 339-347. http://geodesic.mathdoc.fr/item/JMAG_1997_4_3_a5/