Theorem of reduction in the problem of reconstruction of submanifolds in Euclidean space by a given Grassmann image
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (1997) no. 3, pp. 309-333
Cet article a éte moissonné depuis la source Math-Net.Ru
A necessary condition for the Grassmann image of submanifolds in the Euclidean space is proved. It is shown that the reconstruction of a submanifold $F^n\subset E^{n+m}$ with the constant dimension $l$ of the first normal space by a given $k$-dimensional Grassmann image $\Gamma$ is equivalent to the reconstruction of some submanifold $\tilde F^k\subset E^{k+l}$ with the constant dimension I of the first normal space by a given fe-dimensional Grassmann image $\tilde\Gamma$, where $\tilde\Gamma$ is connected with $\Gamma$ in a special way.
@article{JMAG_1997_4_3_a3,
author = {Vasil Gorkaviy},
title = {Theorem of reduction in the problem of reconstruction of submanifolds in {Euclidean} space by a given {Grassmann} image},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {309--333},
year = {1997},
volume = {4},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_1997_4_3_a3/}
}
TY - JOUR AU - Vasil Gorkaviy TI - Theorem of reduction in the problem of reconstruction of submanifolds in Euclidean space by a given Grassmann image JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1997 SP - 309 EP - 333 VL - 4 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_1997_4_3_a3/ LA - ru ID - JMAG_1997_4_3_a3 ER -
%0 Journal Article %A Vasil Gorkaviy %T Theorem of reduction in the problem of reconstruction of submanifolds in Euclidean space by a given Grassmann image %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 1997 %P 309-333 %V 4 %N 3 %U http://geodesic.mathdoc.fr/item/JMAG_1997_4_3_a3/ %G ru %F JMAG_1997_4_3_a3
Vasil Gorkaviy. Theorem of reduction in the problem of reconstruction of submanifolds in Euclidean space by a given Grassmann image. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (1997) no. 3, pp. 309-333. http://geodesic.mathdoc.fr/item/JMAG_1997_4_3_a3/