Integral representations of functions in the quantum disk. I
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (1997) no. 3, pp. 286-308
Cet article a éte moissonné depuis la source Math-Net.Ru
A $q$-analogue of the unit disk - the simplest homogeneous space of the quantum group $SU(1,1)$ is considered, $q$-analogues of the Cauchy–Green formula, the integral representation of eigen functions of the Laplace–Beltrami operator, the Green function for the Poisson equation and the formula of the Fourier transformation are given.
@article{JMAG_1997_4_3_a2,
author = {L. L. Vaksman and D. L. Shklyarov},
title = {Integral representations of functions in the quantum {disk.~I}},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {286--308},
year = {1997},
volume = {4},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_1997_4_3_a2/}
}
TY - JOUR AU - L. L. Vaksman AU - D. L. Shklyarov TI - Integral representations of functions in the quantum disk. I JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1997 SP - 286 EP - 308 VL - 4 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_1997_4_3_a2/ LA - ru ID - JMAG_1997_4_3_a2 ER -
L. L. Vaksman; D. L. Shklyarov. Integral representations of functions in the quantum disk. I. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (1997) no. 3, pp. 286-308. http://geodesic.mathdoc.fr/item/JMAG_1997_4_3_a2/