Bianchi–Li–Backlund transformation in spaces of constant curvature $H^3(-1)$ and $S^3(1)$
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (1997) no. 1, pp. 133-144
Cet article a éte moissonné depuis la source Math-Net.Ru
Bianchi–Lie–Backlund transformation in space forms $H^3(-1)$ (Poincare model of Lobachevsky space at the upper half-plane) and $S^3(1)$ (spherical space with the Riemann metric) are considered. The conditions defining the transformation in global coordinates and the corresponding differential equations of surfaces of constant external curvature are derived.
@article{JMAG_1997_4_1_a8,
author = {L. A. Masal'tsev},
title = {Bianchi{\textendash}Li{\textendash}Backlund transformation in spaces of constant curvature $H^3(-1)$ and $S^3(1)$},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {133--144},
year = {1997},
volume = {4},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_1997_4_1_a8/}
}
TY - JOUR AU - L. A. Masal'tsev TI - Bianchi–Li–Backlund transformation in spaces of constant curvature $H^3(-1)$ and $S^3(1)$ JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1997 SP - 133 EP - 144 VL - 4 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_1997_4_1_a8/ LA - ru ID - JMAG_1997_4_1_a8 ER -
L. A. Masal'tsev. Bianchi–Li–Backlund transformation in spaces of constant curvature $H^3(-1)$ and $S^3(1)$. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (1997) no. 1, pp. 133-144. http://geodesic.mathdoc.fr/item/JMAG_1997_4_1_a8/