Bianchi–Li–Backlund transformation in spaces of constant curvature $H^3(-1)$ and $S^3(1)$
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (1997) no. 1, pp. 133-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Bianchi–Lie–Backlund transformation in space forms $H^3(-1)$ (Poincare model of Lobachevsky space at the upper half-plane) and $S^3(1)$ (spherical space with the Riemann metric) are considered. The conditions defining the transformation in global coordinates and the corresponding differential equations of surfaces of constant external curvature are derived.
@article{JMAG_1997_4_1_a8,
     author = {L. A. Masal'tsev},
     title = {Bianchi{\textendash}Li{\textendash}Backlund transformation in spaces of constant curvature $H^3(-1)$ and $S^3(1)$},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {133--144},
     year = {1997},
     volume = {4},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1997_4_1_a8/}
}
TY  - JOUR
AU  - L. A. Masal'tsev
TI  - Bianchi–Li–Backlund transformation in spaces of constant curvature $H^3(-1)$ and $S^3(1)$
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1997
SP  - 133
EP  - 144
VL  - 4
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_1997_4_1_a8/
LA  - ru
ID  - JMAG_1997_4_1_a8
ER  - 
%0 Journal Article
%A L. A. Masal'tsev
%T Bianchi–Li–Backlund transformation in spaces of constant curvature $H^3(-1)$ and $S^3(1)$
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1997
%P 133-144
%V 4
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_1997_4_1_a8/
%G ru
%F JMAG_1997_4_1_a8
L. A. Masal'tsev. Bianchi–Li–Backlund transformation in spaces of constant curvature $H^3(-1)$ and $S^3(1)$. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (1997) no. 1, pp. 133-144. http://geodesic.mathdoc.fr/item/JMAG_1997_4_1_a8/