Orthogonal invariant Riemannian metrics on the real Grassmann manifolds
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (1997) no. 1, pp. 75-83
Cet article a éte moissonné depuis la source Math-Net.Ru
A full description of the $2$-parameter family of all possible $SO(4)$-invariant Riemannian metrics on the real Grassmann manifolds $G_{2,4}$ и $G_{2,4}^+$ and is given and an extremal property characterizing the canonical metric on $G_{2,4}$ is described. On the basis of these results, we give a new short geometrical proof of the uniqueness (up to the constant factor) of invariant metrics on $G_{p,n}$ and $G_{p,n}^+$ for $(p,n)\ne(2,4)$ and construct these metrics. We use the embeddings of the Grassmann manifolds in the polivector space $\Lambda_{p,n}$ (which can be identified as the Euclidean $\bigl(\frac{n}{p}\bigr)$-space), which allows us to solve the problems of intrinsic geometry of Grassmann manifolds by methods of exterior geometry.
@article{JMAG_1997_4_1_a4,
author = {S. E. Kozlov},
title = {Orthogonal invariant {Riemannian} metrics on the real {Grassmann} manifolds},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {75--83},
year = {1997},
volume = {4},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_1997_4_1_a4/}
}
S. E. Kozlov. Orthogonal invariant Riemannian metrics on the real Grassmann manifolds. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (1997) no. 1, pp. 75-83. http://geodesic.mathdoc.fr/item/JMAG_1997_4_1_a4/