Orthogonal invariant Riemannian metrics on the real Grassmann manifolds
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (1997) no. 1, pp. 75-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A full description of the $2$-parameter family of all possible $SO(4)$-invariant Riemannian metrics on the real Grassmann manifolds $G_{2,4}$ и $G_{2,4}^+$ and is given and an extremal property characterizing the canonical metric on $G_{2,4}$ is described. On the basis of these results, we give a new short geometrical proof of the uniqueness (up to the constant factor) of invariant metrics on $G_{p,n}$ and $G_{p,n}^+$ for $(p,n)\ne(2,4)$ and construct these metrics. We use the embeddings of the Grassmann manifolds in the polivector space $\Lambda_{p,n}$ (which can be identified as the Euclidean $\bigl(\frac{n}{p}\bigr)$-space), which allows us to solve the problems of intrinsic geometry of Grassmann manifolds by methods of exterior geometry.
@article{JMAG_1997_4_1_a4,
     author = {S. E. Kozlov},
     title = {Orthogonal invariant {Riemannian} metrics on the real {Grassmann} manifolds},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {75--83},
     year = {1997},
     volume = {4},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1997_4_1_a4/}
}
TY  - JOUR
AU  - S. E. Kozlov
TI  - Orthogonal invariant Riemannian metrics on the real Grassmann manifolds
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1997
SP  - 75
EP  - 83
VL  - 4
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_1997_4_1_a4/
LA  - ru
ID  - JMAG_1997_4_1_a4
ER  - 
%0 Journal Article
%A S. E. Kozlov
%T Orthogonal invariant Riemannian metrics on the real Grassmann manifolds
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1997
%P 75-83
%V 4
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_1997_4_1_a4/
%G ru
%F JMAG_1997_4_1_a4
S. E. Kozlov. Orthogonal invariant Riemannian metrics on the real Grassmann manifolds. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (1997) no. 1, pp. 75-83. http://geodesic.mathdoc.fr/item/JMAG_1997_4_1_a4/