On isometric reflections in Banach spaces
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (1997) no. 1, pp. 212-247 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain the following characterization of Hilbert spaces. Let $E$ be a Banach space the unit sphere $S$ of which has a hyperplane of symmetry. Then $E$ is a Hilbert space iff any of the following two conditions is fulfilled: a) the isometry group $\operatorname{Iso}E$ of $E$ has a dense orbit in $S'$ ; b) the identity component $G_0$ of the group $\operatorname{Iso}E$ endowed with the strong operator topology acts topologically irreducible on $E$. Some related results on infinite dimensional Coxeter groups generated by isometric reflections are given which allow us to analyse the structure of isometry groups containing sufficiently many reflections.
@article{JMAG_1997_4_1_a12,
     author = {A. Skorik and M. G. Zaidenberg},
     title = {On isometric reflections in {Banach} spaces},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {212--247},
     year = {1997},
     volume = {4},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1997_4_1_a12/}
}
TY  - JOUR
AU  - A. Skorik
AU  - M. G. Zaidenberg
TI  - On isometric reflections in Banach spaces
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1997
SP  - 212
EP  - 247
VL  - 4
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_1997_4_1_a12/
LA  - en
ID  - JMAG_1997_4_1_a12
ER  - 
%0 Journal Article
%A A. Skorik
%A M. G. Zaidenberg
%T On isometric reflections in Banach spaces
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1997
%P 212-247
%V 4
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_1997_4_1_a12/
%G en
%F JMAG_1997_4_1_a12
A. Skorik; M. G. Zaidenberg. On isometric reflections in Banach spaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (1997) no. 1, pp. 212-247. http://geodesic.mathdoc.fr/item/JMAG_1997_4_1_a12/