On isometric reflections in Banach spaces
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (1997) no. 1, pp. 212-247
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain the following characterization of Hilbert spaces. Let $E$ be a Banach space the unit sphere $S$ of which has a hyperplane of symmetry. Then $E$ is a Hilbert space iff any of the following two conditions is fulfilled: a) the isometry group $\operatorname{Iso}E$ of $E$ has a dense orbit in $S'$ ; b) the identity component $G_0$ of the group $\operatorname{Iso}E$ endowed with the strong operator topology acts topologically irreducible on $E$. Some related results on infinite dimensional Coxeter groups generated by isometric reflections are given which allow us to analyse the structure of isometry groups containing sufficiently many reflections.
@article{JMAG_1997_4_1_a12,
author = {A. Skorik and M. G. Zaidenberg},
title = {On isometric reflections in {Banach} spaces},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {212--247},
year = {1997},
volume = {4},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_1997_4_1_a12/}
}
A. Skorik; M. G. Zaidenberg. On isometric reflections in Banach spaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 4 (1997) no. 1, pp. 212-247. http://geodesic.mathdoc.fr/item/JMAG_1997_4_1_a12/