On a counterexample concerning unique continuation for elliptic equations in divergence form
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 3, pp. 308-331
Cet article a éte moissonné depuis la source Math-Net.Ru
We construct a second order elliptic equation in divergence form in $\mathrm R^3$, with a non-zero solution which vanishes in a half-space. The coefficients are $\alpha$-Hölder continuous of any order $\alpha<1$. This improves a previous counterexample of Miller [1,2] Moreover, we obtain coefficients which belong to a finer class of smoothness, expressed in terms of the modulus of continuity.
@article{JMAG_1996_3_3_a6,
author = {Niculae Mandache},
title = {On a counterexample concerning unique continuation for elliptic equations in divergence form},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {308--331},
year = {1996},
volume = {3},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_1996_3_3_a6/}
}
TY - JOUR AU - Niculae Mandache TI - On a counterexample concerning unique continuation for elliptic equations in divergence form JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1996 SP - 308 EP - 331 VL - 3 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_1996_3_3_a6/ LA - en ID - JMAG_1996_3_3_a6 ER -
Niculae Mandache. On a counterexample concerning unique continuation for elliptic equations in divergence form. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 3, pp. 308-331. http://geodesic.mathdoc.fr/item/JMAG_1996_3_3_a6/