The characterization of conformal maps of the upper halfplane on a “comb” type domain
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 3, pp. 290-307
Cet article a éte moissonné depuis la source Math-Net.Ru
The domain $\{z\in\mathbf C: -\infty\leq a<\operatorname{Re}z0\}\setminus\{\cup[x_k,x_k+iy_k]\}$ is called a “comb” type domain. For each closed set $E$ on the real axis there exists the unique conformal map of the upper halfplane onto a certain “comb” type domain of mapping the set $E$ on the interval $(a,b)$. If $a=-\infty$ and $b=+\infty$, then the set $E$ is referred to the type $(A)$. If either $a=-\infty$, $b<+\infty$, or $a>-\infty$, $b=+\infty$, then $E$ is referred to the type $(B)$. If both $a$ and $b$ are finite, then $E$ is referred to the type $(C)$. Conditions for a set $E$ to be referred to the type $(A)$, $(B)$ or $(C)$ are given.
@article{JMAG_1996_3_3_a5,
author = {A. V. Kesarev},
title = {The characterization of conformal maps of the upper halfplane on a {\textquotedblleft}comb{\textquotedblright} type domain},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {290--307},
year = {1996},
volume = {3},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_1996_3_3_a5/}
}
TY - JOUR AU - A. V. Kesarev TI - The characterization of conformal maps of the upper halfplane on a “comb” type domain JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1996 SP - 290 EP - 307 VL - 3 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_1996_3_3_a5/ LA - ru ID - JMAG_1996_3_3_a5 ER -
A. V. Kesarev. The characterization of conformal maps of the upper halfplane on a “comb” type domain. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 3, pp. 290-307. http://geodesic.mathdoc.fr/item/JMAG_1996_3_3_a5/