On the vertical strong sphericity of Sasaki metric of tangent sphere bundles
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 3, pp. 446-455
Cet article a éte moissonné depuis la source Math-Net.Ru
The distribution $\mathcal L^q$ on the Riemannian manifold $M^n$ is called strong spherical if the curvature tensor of its metric satisfies the condition $R(X,Y)Z=k(\langle Y,Z\rangle X-\langle X,Z\rangle Y)$, ($k>0$) for any tangent to $M^n$ vectors $X$, $Z$ and any $Y\in\mathcal L^q$. The value $q=\operatorname{dim}\mathcal L^q$ is called the strong sphericity index. The conditions are considered at winch the vertical strong spherical distribution can exist on tangent sphere bundle $T_1M^n$ with Sasaki metric.
@article{JMAG_1996_3_3_a14,
author = {A. L. Yampol'skii},
title = {On the vertical strong sphericity of {Sasaki} metric of tangent sphere bundles},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {446--455},
year = {1996},
volume = {3},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_1996_3_3_a14/}
}
TY - JOUR AU - A. L. Yampol'skii TI - On the vertical strong sphericity of Sasaki metric of tangent sphere bundles JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1996 SP - 446 EP - 455 VL - 3 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_1996_3_3_a14/ LA - ru ID - JMAG_1996_3_3_a14 ER -
A. L. Yampol'skii. On the vertical strong sphericity of Sasaki metric of tangent sphere bundles. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 3, pp. 446-455. http://geodesic.mathdoc.fr/item/JMAG_1996_3_3_a14/