On power serves with Gelfond–Leontev derivatives satisfying a special condition
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 3, pp. 423-445
Cet article a éte moissonné depuis la source Math-Net.Ru
Necessary and sufficient conditions on a function $l$ and an increasing sequence $(n_p)$ of non-negative integers are found in order that $f$ be an entire function whenever for all $p\in z_+$ the Gelfond–Leontev derivative $D_l^{n_p}f$ belongs to the class $A_\lambda(0)$, where the class $A_\lambda(0)$ consists of all functions $g(z)=\sum_{k=0}^\infty g_k(z^k)$ such that $|g_k|\le\lambda_k|g_1|$ ($k\geq1$) and $\lambda=(\lambda_k)$ is a sequence of positive numbers.
@article{JMAG_1996_3_3_a13,
author = {M. N. Sheremeta},
title = {On power serves with {Gelfond{\textendash}Leontev} derivatives satisfying a special condition},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {423--445},
year = {1996},
volume = {3},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_1996_3_3_a13/}
}
TY - JOUR AU - M. N. Sheremeta TI - On power serves with Gelfond–Leontev derivatives satisfying a special condition JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1996 SP - 423 EP - 445 VL - 3 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_1996_3_3_a13/ LA - ru ID - JMAG_1996_3_3_a13 ER -
M. N. Sheremeta. On power serves with Gelfond–Leontev derivatives satisfying a special condition. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 3, pp. 423-445. http://geodesic.mathdoc.fr/item/JMAG_1996_3_3_a13/