Gårding domains for unitary representations of countable inductive limits of locally compact groups
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 3, pp. 231-260
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $G$ be the inductive limit of an increasing sequence of locally compact second countable groups $G_1\subset G_2\subset\cdots$. Given a strongly continuous unitary representation $U$ of $G$ in a separable Hilbert space $\mathcal H$, we construct an $U$-invariant, separable, nuclear, Montel $(\mathrm{DF})$-space $\mathcal F$ which is densely (topologically) embedded in $\mathcal H$ and such that the restriction of $U$ to $\mathcal F$ is a weakly continuous representation of $G$ by continuous linear operators in $\mathcal F$. Moreover, $\mathcal F$ is a domain of essential self-adjointness for the generator of each one-parameter subgroup of $G$, and all such generators keep $\mathcal F$ invariant.
@article{JMAG_1996_3_3_a1,
author = {A. I. Danilenko},
title = {G\r{a}rding domains for unitary representations of countable inductive limits of locally compact groups},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {231--260},
year = {1996},
volume = {3},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_1996_3_3_a1/}
}
TY - JOUR AU - A. I. Danilenko TI - Gårding domains for unitary representations of countable inductive limits of locally compact groups JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1996 SP - 231 EP - 260 VL - 3 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_1996_3_3_a1/ LA - en ID - JMAG_1996_3_3_a1 ER -
%0 Journal Article %A A. I. Danilenko %T Gårding domains for unitary representations of countable inductive limits of locally compact groups %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 1996 %P 231-260 %V 3 %N 3 %U http://geodesic.mathdoc.fr/item/JMAG_1996_3_3_a1/ %G en %F JMAG_1996_3_3_a1
A. I. Danilenko. Gårding domains for unitary representations of countable inductive limits of locally compact groups. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 3, pp. 231-260. http://geodesic.mathdoc.fr/item/JMAG_1996_3_3_a1/