On complete convex solutions of the equation $\operatorname{spur}_m(z_{ij})=1$
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 102-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let designation $\operatorname{spur}_m(z_{ij})=1$ stand for the sum of all principal $m$-order minors of matrix $(z_{ij})$, consisting of second derivatives of the function $z(x^1,\dots,x^n)$. Any complete convex class $C^{2\alpha}$ solution of the equation $\operatorname{spur}_m(z_{ij})=1$, ($2\le m), will be a quadratic polynomial if the matrix $(z_{ij})$ eigenvalues are sufficiently close to each other.
@article{JMAG_1996_3_1_a8,
     author = {V. N. Kokarev},
     title = {On complete convex solutions of the equation $\operatorname{spur}_m(z_{ij})=1$},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {102--117},
     year = {1996},
     volume = {3},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a8/}
}
TY  - JOUR
AU  - V. N. Kokarev
TI  - On complete convex solutions of the equation $\operatorname{spur}_m(z_{ij})=1$
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1996
SP  - 102
EP  - 117
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a8/
LA  - ru
ID  - JMAG_1996_3_1_a8
ER  - 
%0 Journal Article
%A V. N. Kokarev
%T On complete convex solutions of the equation $\operatorname{spur}_m(z_{ij})=1$
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1996
%P 102-117
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a8/
%G ru
%F JMAG_1996_3_1_a8
V. N. Kokarev. On complete convex solutions of the equation $\operatorname{spur}_m(z_{ij})=1$. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 102-117. http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a8/