On complete convex solutions of the equation $\operatorname{spur}_m(z_{ij})=1$
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 102-117
Cet article a éte moissonné depuis la source Math-Net.Ru
Let designation $\operatorname{spur}_m(z_{ij})=1$ stand for the sum of all principal $m$-order minors of matrix $(z_{ij})$, consisting of second derivatives of the function $z(x^1,\dots,x^n)$. Any complete convex class $C^{2\alpha}$ solution of the equation $\operatorname{spur}_m(z_{ij})=1$, ($2\le m), will be a quadratic polynomial if the matrix $(z_{ij})$ eigenvalues are sufficiently close to each other.
@article{JMAG_1996_3_1_a8,
author = {V. N. Kokarev},
title = {On complete convex solutions of the equation $\operatorname{spur}_m(z_{ij})=1$},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {102--117},
year = {1996},
volume = {3},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a8/}
}
V. N. Kokarev. On complete convex solutions of the equation $\operatorname{spur}_m(z_{ij})=1$. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 102-117. http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a8/