Eigenvalue distribution of large random matrices with correlated entries
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 80-101
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the normalized eigenvalue counting function $N_n(\lambda)$ of an ensemble of $n\times n$ symmetric random matrices with statistically dependent arbitrary distributed entries $u_n(x,y)$, $x,y=1,\dots,n$. We prove that if the correlation function $S$ of the entries is the same for each $n$ and the correlation coefficient of random fields $\{u_n(x,y)\}$ decays fast enough, then in the limit $n\to\infty$ the measure $N_n(d\lambda)$ weakly converges in probability to a nonrandom measure $N(d\lambda)$. We derive an equation for the Stieltjes transform of limiting $N_n(d\lambda)$ and show that the latter depends only on the limiting matrix of averages of $u_n(x,y)$ and the correlation function $S$.
@article{JMAG_1996_3_1_a7,
author = {A. Khorunzhii},
title = {Eigenvalue distribution of large random matrices with correlated entries},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {80--101},
year = {1996},
volume = {3},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a7/}
}
A. Khorunzhii. Eigenvalue distribution of large random matrices with correlated entries. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 80-101. http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a7/