Eigenvalue distribution of large random matrices with correlated entries
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 80-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the normalized eigenvalue counting function $N_n(\lambda)$ of an ensemble of $n\times n$ symmetric random matrices with statistically dependent arbitrary distributed entries $u_n(x,y)$, $x,y=1,\dots,n$. We prove that if the correlation function $S$ of the entries is the same for each $n$ and the correlation coefficient of random fields $\{u_n(x,y)\}$ decays fast enough, then in the limit $n\to\infty$ the measure $N_n(d\lambda)$ weakly converges in probability to a nonrandom measure $N(d\lambda)$. We derive an equation for the Stieltjes transform of limiting $N_n(d\lambda)$ and show that the latter depends only on the limiting matrix of averages of $u_n(x,y)$ and the correlation function $S$.
@article{JMAG_1996_3_1_a7,
     author = {A. Khorunzhii},
     title = {Eigenvalue distribution of large random matrices with correlated entries},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {80--101},
     year = {1996},
     volume = {3},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a7/}
}
TY  - JOUR
AU  - A. Khorunzhii
TI  - Eigenvalue distribution of large random matrices with correlated entries
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1996
SP  - 80
EP  - 101
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a7/
LA  - en
ID  - JMAG_1996_3_1_a7
ER  - 
%0 Journal Article
%A A. Khorunzhii
%T Eigenvalue distribution of large random matrices with correlated entries
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1996
%P 80-101
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a7/
%G en
%F JMAG_1996_3_1_a7
A. Khorunzhii. Eigenvalue distribution of large random matrices with correlated entries. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 80-101. http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a7/