A theorem on stability of the argument of characteristic function
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 70-79
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $f(x)$ be the characteristic function of a probability distribution on the line. If $1-|f(t)|\le\varepsilon$ for $|t|\le a$ and, moreover, $\varepsilon\le C_1$, then $$ \min_{\beta\in R} \max_{|t|\leq a}|\arg f(t)-\beta t|\leq C_2\varepsilon^{3/4}, $$ where $C_1$, $C_2$ are suitable absolute constants.
@article{JMAG_1996_3_1_a6,
author = {A. I. Il'inskii},
title = {A theorem on stability of the argument of characteristic function},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {70--79},
year = {1996},
volume = {3},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a6/}
}
A. I. Il'inskii. A theorem on stability of the argument of characteristic function. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 70-79. http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a6/