Meyers type regularity for bounded and almost periodic solutions to nonlinear second
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 46-64
Cet article a éte moissonné depuis la source Math-Net.Ru
We have obtained the conditions which garantees that an $W_0^{1,2}$-valued almost periodic solution to a nonlinear parabolic equation is really almost periodic with values in the space $W_0^{1,p}$, where $p-2>0$ is sufficiently small.
@article{JMAG_1996_3_1_a4,
author = {K. Gr\"oger and A. Pankov},
title = {Meyers type regularity for bounded and almost periodic solutions to nonlinear second},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {46--64},
year = {1996},
volume = {3},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a4/}
}
TY - JOUR AU - K. Gröger AU - A. Pankov TI - Meyers type regularity for bounded and almost periodic solutions to nonlinear second JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1996 SP - 46 EP - 64 VL - 3 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a4/ LA - en ID - JMAG_1996_3_1_a4 ER -
K. Gröger; A. Pankov. Meyers type regularity for bounded and almost periodic solutions to nonlinear second. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 46-64. http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a4/