Meyers type regularity for bounded and almost periodic solutions to nonlinear second
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 46-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We have obtained the conditions which garantees that an $W_0^{1,2}$-valued almost periodic solution to a nonlinear parabolic equation is really almost periodic with values in the space $W_0^{1,p}$, where $p-2>0$ is sufficiently small.
@article{JMAG_1996_3_1_a4,
     author = {K. Gr\"oger and A. Pankov},
     title = {Meyers type regularity for bounded and almost periodic solutions to nonlinear second},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {46--64},
     year = {1996},
     volume = {3},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a4/}
}
TY  - JOUR
AU  - K. Gröger
AU  - A. Pankov
TI  - Meyers type regularity for bounded and almost periodic solutions to nonlinear second
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1996
SP  - 46
EP  - 64
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a4/
LA  - en
ID  - JMAG_1996_3_1_a4
ER  - 
%0 Journal Article
%A K. Gröger
%A A. Pankov
%T Meyers type regularity for bounded and almost periodic solutions to nonlinear second
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1996
%P 46-64
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a4/
%G en
%F JMAG_1996_3_1_a4
K. Gröger; A. Pankov. Meyers type regularity for bounded and almost periodic solutions to nonlinear second. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 46-64. http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a4/